Fit a linear model on the provided data.
Usage
# S3 method for InducerXGBoost
fit(
.inducer,
.data = NULL,
nrounds = 1,
eta = 0.3,
gamma = 0,
max_depth = 6,
min_child_weight = 1,
subsample = 1,
colsample_bytree = 1,
lambda = 1,
alpha = 0,
num_parallel_tree = 1,
...
)
Arguments
- .inducer
A
InducerXGBoost
object- .data
The data to which the model should be fitted, provided as a
Dataset
object.- nrounds
number of rounds
- eta
eta value
- gamma
gamma
- max_depth
max depth paramater
- min_child_weight
min child weight paramater
- subsample
subsample paramater
- colsample_bytree
colsample paramater
- lambda
lambda paramater
- alpha
alpha paramater
- num_parallel_tree
number of parallel tree paramater
- ...
further args
Examples
inducer <- InducerXGBoost()
inducer
#> Inducer: XGBoost
#> Configuration: nrounds = 1, eta = 0.3, gamma = 0, max_depth = 6, min_child_weight = 1, subsample = 1, colsample_bytree = 1, lambda = 1, alpha = 0, num_parallel_tree = 1
cars.data <- Dataset(data = cars, target = "dist")
fittedmod <- fit.InducerXGBoost(.inducer = inducer, .data = cars.data)
#> Error in fit.InducerXGBoost(.inducer = inducer, .data = cars.data): could not find function "fit.InducerXGBoost"
fittedmod
#> Error in eval(expr, envir, enclos): object 'fittedmod' not found