Function reference
-
Dataset() - Create a
Datasetobject
-
Evaluator() - Build an Evaluator
-
EvaluatorAIC() - Evaluate performance through AIC
-
EvaluatorAUC() - Compute Area Under The Curve
-
EvaluatorAccuracy() - Compute Accuracy of a Classifier
-
EvaluatorBIC() - Evaluate performance through BIC
-
EvaluatorMAE() - Evaluate Predictions using the Mean Absolute Error
-
EvaluatorMSE() - Evaluate predictions using the Mean Squared Error
-
InducerLm() - Function to create an object of class
InducerLm
-
InducerRpart() - Function to create an object of class
InducerRpart
-
InducerXGBoost() - Function to create an object of class
InducerXGBoost
-
Model() - Create a Model object
-
Split() - Create a Split object hosting available resampling strategies
-
SplitCV() - Create a SplitCV object
-
as.data.frame(<Dataset>) - Create a data.frame object from a
Datasetobject
-
`configuration<-`() - S3 method configuration<- for class 'InducerLm'
-
configuration(<Inducer>) - S3 method configuration for class
inducer
-
configuration() - S3 method configuration
-
fit(<InducerLm>) - Fit a Model using
InducerLm
-
fit(<InducerRpart>) - Fit a Model using
InducerRpart
-
fit(<InducerXGBoost>) - Fit XGBoost model using
InducerXGBoost
-
fit() - S3 method fit
-
hp() - Hyperparameter This function return the name, type and range of hyperparameters
-
hyperparameters()hyperparameters() - S3 method hyperparameters
-
inducer2Env() - Add new inducer to environment
-
metainfo(<Dataset>) - Print the meta Information of a dataset
-
metainfo() - S3 method metainfo
-
mlrminimlrmini-package - mlrmini: mlrmini
-
modelInfo(<Model>) - modelInfo: print out info of a model
-
modelInfo() - S3 method modelInfo
-
modelObject(<Model>) - modelObject: get the print out of a model
-
modelObject() - S3 method modelObject
-
predict(<ModelLm>) - Predict values for
fit.InducerLm
-
predict(<ModelRpart>) - Predict values for
fit.InducerRpart
-
predict(<ModelXGBoost>) - Predict values for
fit.InducerXGBoost
-
predict() - S3 method predict
-
print(<Dataset>) - A print method for
Datasetobjects
-
print(<Evaluator>) - Print an Evaluator
-
print(<EvaluatorAIC>) - Print an EvaluatorAIC
-
print(<EvaluatorAUC>) - Print an EvaluatorAUC.
-
print(<EvaluatorAccuracy>) - Print an EvaluatorAccuracy
-
print(<EvaluatorBIC>) - Print an EvaluatorBIC
-
print(<EvaluatorMAE>) - Print an EvaluatorMAE.
-
print(<EvaluatorMSE>) - Print an EvaluatorMSE
-
print(<InducerLm>) - S3 method print for class
InducerLm
-
print(<InducerRpart>) - S3 method print for class
InducerRpart
-
print(<InducerXGBoost>) - S3 method print for class 'InducerXGBoost'
-
print(<ModelRegression>) - Printing Regression Models
-
print(<SplitInstanceCV>) - Printing a SplitInstanceCV
-
resample() - Create a ResamplePrediction
-
set_cv_idx() - Set indices for k-fold CV with repetitions
-
`[`(<Dataset>) - Subset a
DatasetObject