Function reference
-
Dataset()
- Create a
Dataset
object
-
Evaluator()
- Build an Evaluator
-
EvaluatorAIC()
- Evaluate performance through AIC
-
EvaluatorAUC()
- Compute Area Under The Curve
-
EvaluatorAccuracy()
- Compute Accuracy of a Classifier
-
EvaluatorBIC()
- Evaluate performance through BIC
-
EvaluatorMAE()
- Evaluate Predictions using the Mean Absolute Error
-
EvaluatorMSE()
- Evaluate predictions using the Mean Squared Error
-
InducerLm()
- Function to create an object of class
InducerLm
-
InducerRpart()
- Function to create an object of class
InducerRpart
-
InducerXGBoost()
- Function to create an object of class
InducerXGBoost
-
Model()
- Create a Model object
-
Split()
- Create a Split object hosting available resampling strategies
-
SplitCV()
- Create a SplitCV object
-
as.data.frame(<Dataset>)
- Create a data.frame object from a
Dataset
object
-
`configuration<-`()
- S3 method configuration<- for class 'InducerLm'
-
configuration(<Inducer>)
- S3 method configuration for class
inducer
-
configuration()
- S3 method configuration
-
fit(<InducerLm>)
- Fit a Model using
InducerLm
-
fit(<InducerRpart>)
- Fit a Model using
InducerRpart
-
fit(<InducerXGBoost>)
- Fit XGBoost model using
InducerXGBoost
-
fit()
- S3 method fit
-
hp()
- Hyperparameter This function return the name, type and range of hyperparameters
-
hyperparameters()
hyperparameters()
- S3 method hyperparameters
-
inducer2Env()
- Add new inducer to environment
-
metainfo(<Dataset>)
- Print the meta Information of a dataset
-
metainfo()
- S3 method metainfo
-
mlrmini
mlrmini-package
- mlrmini: mlrmini
-
modelInfo(<Model>)
- modelInfo: print out info of a model
-
modelInfo()
- S3 method modelInfo
-
modelObject(<Model>)
- modelObject: get the print out of a model
-
modelObject()
- S3 method modelObject
-
predict(<ModelLm>)
- Predict values for
fit.InducerLm
-
predict(<ModelRpart>)
- Predict values for
fit.InducerRpart
-
predict(<ModelXGBoost>)
- Predict values for
fit.InducerXGBoost
-
predict()
- S3 method predict
-
print(<Dataset>)
- A print method for
Dataset
objects
-
print(<Evaluator>)
- Print an Evaluator
-
print(<EvaluatorAIC>)
- Print an EvaluatorAIC
-
print(<EvaluatorAUC>)
- Print an EvaluatorAUC.
-
print(<EvaluatorAccuracy>)
- Print an EvaluatorAccuracy
-
print(<EvaluatorBIC>)
- Print an EvaluatorBIC
-
print(<EvaluatorMAE>)
- Print an EvaluatorMAE.
-
print(<EvaluatorMSE>)
- Print an EvaluatorMSE
-
print(<InducerLm>)
- S3 method print for class
InducerLm
-
print(<InducerRpart>)
- S3 method print for class
InducerRpart
-
print(<InducerXGBoost>)
- S3 method print for class 'InducerXGBoost'
-
print(<ModelRegression>)
- Printing Regression Models
-
print(<SplitInstanceCV>)
- Printing a SplitInstanceCV
-
resample()
- Create a ResamplePrediction
-
set_cv_idx()
- Set indices for k-fold CV with repetitions
-
`[`(<Dataset>)
- Subset a
Dataset
Object